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We predict l = 0  nucleons in 12C to have a negative (binding) energy centered 
around - 2 2  MeV with a full width at ha l f -maximum of 5.3 MeV. The l ffi 1 
(P3/2 nucleons) are predicted to have a much  narrower spectral energy function 
centered around - 10.6 MeV. A strongly correlated translational invariant wave 
funct ion was used to describe the ground state nucleus. A central two-nucleon 
potential was utilized in the hyperspherieal harmonic  method  to approximately 
solve the Schr~dinger equation for the ground state wave function. Both 
confirmation and  failings of the independent  particle shell model are exposed. 

INTRODUCTION 

Previous calculations (Gross, 1970; Wille, 1971; Faessler, 1973; 
Koltun, 1974; and Fritsch, 1975) of the nucleon spectral energy function 
have been based on the independent particle shell model with residual 
interactions. A sharp peak in the calculated spectral energy function can 
be associated with each hole, one-particle-two-hole, or two-particle-three- 
hole configuration that can couple to the target wave function. In contrast 
tightly bound hole states experimentally have a large width (Mougey, 
1976; Makamura, 1976), while only the low binding hole states are sharply 
peaked. High-energy nucleon knock-out reactions on nuclei, such as (e, ep), 
(p,2p) show that for fixed scattering angles, the summed energy of the 
final state projectiles has a continuous distribution. The one-step direct 
interaction model of these reactions allows one to infer the spectral energy 
function from the summed final-state energy spectrum. With a well-defined 
incident projectile energy, the independent particle shell model predicts a 
sharp distribution of final state energies, and a spectral energy function of 

S~(W)=n~6(W-E~) (1) 
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Here n~ is the number of nucleons with quantum numbers v in the target 
ground state, and E, is the single-particle (negative) energy. The spectral 
energy function predicted by the independent particle shell model is a sum 
of discrete delta functions of energy. It is the purpose of this paper to 
calculate a nuclear spectral function that has a continuous distribution in 
energy. We drop the independent particle motion assumption of the shell 
model and use instead a strongly interacting translation-invariant hyper- 
spherical harmonic wave function. 

We have calculated a spectral energy function for the l=0 and l=  1 
nucleons in the ground state of 12C. We have used a phenomenological 
two-nucleon potential with the nonrelativistic 12-body Schr6dinger equa- 
tion. The solution to the Schr6dinger equation is expanded in the hyper- 
spherical harmonic expansion (Baz, 1970; Sadovoi, 1975; Strobel, 1976; 
Strobel, 1978) and only the configuration corresponding to a full S~/2 shell 
and a full P3/2 shell is retained. This approximation limits us to comparing 
widths of deep and loosely bound hole states, and prevents any attempt to 
reproduce the 12C spectral energy function in all its details. We separate 
the momentum and energy dependence of the spectral energy function as 

s (P ,  w )  = E (2) 
1* 

Neglecting recoil energies, W is the energy supplied to the nucleus to 
remove a proton. P is the momentum of the proton within the target 
nucleus. The spectral function S(p, W) is the joint probability of finding a 
proton with momentum p in the target and with energy W. The subscript v 
denotes the quantum numbers for a bound nucleon of (n, I, j, jz, rz). The 
summation of v in equation (1) is effectively terminated by summing over 
the occupied states of the assumed configuration of the target. In the 
approximation calculated, we include only sl/2 (1=0) and P3/2 (l=1) 
nucleons for the ground state configuration of 12C. This paper will present 
equations for calculating the factors of the spectral energy function appear- 
ing in equation (1), starting from a two-nucleon potential. 

The Hamiltonian for the 12C nucleus (A = 12) is assumed to be 

h 2 
H = -  2---~A~ + ~, V(rij ) (3) 

i<j 

where the center-of-mass kinetic energy has been removed and A~ is the 
Laplacian expressed in the Jacobi coordinates. It can be related to the 
usual Laplacian via 

A 

= E v 2 - v /a 
r i 

i=1  
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where 

A 

R--- E rilA (4) 
i = l  

The solution to 

/-/~, = e ~ ,  (5) 

where E is the total binding energy of the IZc nucleus with respect to six 
protons and six neutrons is assumed known and adequately approximated 
by a K minimal hyperspherical calculation. Rather than using a Slater 
determinant product type independent particle wave function, we expand 
the nuclear wave function in hyperspherieal harmonics. Because center-of- 
mass motion is properly handled, a simple product wave function is not 
obtained in this expansion. Each term in the expansion has a hyperradial 
dependence that does not separate. 

Thus the wave function is expanded as 

* = ~ XKa(P) YKa(f~)IP OA -4)/2 (6) 
Ka 

where the Y,~(~) are antisymmetrical slater determinants of homogenous 
hyperspherieal harmonic polynomials, and the X r~ are the corresponding 
hyperradial functions. Here the hyperradius is defined as 

A 

p2= E (r;-R)2/A (7) 
i = l  

Substituting equation (6) into the 12-body Schr6dinger equation with the 
center of mass removed, equation (5) and retaining only the terms corre- 
sponding to a filled 4 8 $1/2P~/z configuration, results in 

- h  2 d 2 E(E+ 1) ] 
2m do 2 p2 J x + ~ W ( p ) - E ] x = O  (8) 

where 

and 

w(o) = f Yt, o(a) x v(r~j)r,,a(a)aa (9) 

E= K+ (3/2)(A - 2) = 23 (10) 
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Here the subscripts Ka are dropped since only one value for each is 
retained in equation (8). 

We assume a potential with the spin-isospin dependence of the 
one-pion Yukawa potential, and a space part given by 

V(r )  = - A ( e  - x  + Be -3x _ Ce - 6 X ) / x  (11) 

where x=t~,~r. C is adjusted to produce a repulsive potential r12 less than 
0.5 fermi in the S =  1, T = 0  two-nucleon state. A and B are adjusted to 
match the total binding energy of laC to the eigenvalue of equation (5). 
Thus the potential is strictly phenomenological and central (A--6  MeV, 
B = 1.6, C=  4.9). For closed j shell nuclei, the tensor and spin orbit parts 
average to zero so, to the extent that X2C is a closedj shell nucleus, one can 
use a central potential in seeking the total binding energy. 

The spectral energy function is usually defined as 

S,(W) = (q t l a*8 (W-  H)  a~ I q' ) (12) 

where a +,  a~ are creation and anniliation operators, respectively, for a 
nucleon with the single-particle set of quantum numbers v. These creation 
and anniliation operators are associated with a product wave function 
(Fetter, 1971; Bohr, 1969; De Shalit, 1974) and the matching Hamiltonian 
is then a sum of one- and two-particle wave function matrix elements times 
the appropriate creation and anniliation operators. A product wave func- 
tion of one-body wave functions is not used here; consequently, the 
standard creation anniliation operator formalism is not used either. We 
define the probability a nucleon in quantum state p has energy W as: 

Sp(W)  = (~ita 16 ( w -  n r )  I ~a ) (13) 

where H, includes only certain of the terms of the total Hamiltonian, 
equation (3). We require that the coordinates of the particle in quantum 
state I, be operated on by the term in the total Hamiltonian, for that term 
to be included in H~. Neglecting center-of-mass effects, this definition is 
equivalent to equation (12). 

This requirement is straightforward for distinguishable particles. For 
instance, if the coordinates of the particle in quantum state ~, are labeled r 1, 
then 

h2 V2 -[- Z V(rlj) (14) 
/-/~ = 2 m  r, 

J 

When the particle removed is one of several identical particles, antisymme- 
try of the wave function upon identical particle exchange complicates the 
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operator Hp somewhat. The principle that led to equation (14) remains. We 
just require the coordinates of the included terms in the Hamiltonian to 
match the coordinates of the particle in quantum state u. Thus we have A 
body matrix elements to evaluate in equation (13) for the spectral energy 
function. 

T H E O R Y  

Here we outline the details of the solution for the A-body wave 
function ,I,, and how to get the one-body wave function ~(p) from it, as 
well as the spectral energy function S,,(W). The A-body wave function is 
expanded in hyperspherical coordinates as 

% ~" E XKa(IO)YKa(~'~)/R (3A-4)/2 ~ X  RKa(P)YKa(~'~) (15) 
Ka Ka 

where the Yxa(f~) are orthonormalized antisymmetric hyperharmonic poly- 
nomials and the XKa satisfy coupled differential equations: 

( h:)[d: e(e+l)] 
-- -~m dp 2 p2 + W(p)-E}xKo(p) 

Ka = Wka,(P)X.,o,(P) 
K'a'~Ka 

(16) 

ga 
W,~, a, is the hyperspherical angular average of the potential: 

wko,(p)  = Y~'a" g V(rlj) 
i<j 

(17) 

The hyperradius p satisfies 

A A--1 
/ 02=  E ( r ; - r j )2 /A--  E ri 2 - A R 2  -- ~ ~2 

i<j  i= l  i~ l  
(18) 

The volume element can be written as 

A--1 

d%.4_ 3 = ]~ d~i=p3A-4 dodf~ 
i=l 

(19) 
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and the integral fdf~ can be transformed to 

fae=lraS/S 3/2 )] 1r---iJcp3-~ ~-s~;) exp[ S /  i=, ~ r ' 2  d'c3A (20) 

This relation is quite useful because it permits treating the 3A coordi- 
nates as independent, allowing most integrals to be performed analytically. 
Conservation of momentum is assured by doing the contour integral ds 
prior to the last integral to be evaluated. The contour C is up the 
imaginary S axis from - o e  to plus o~, with an infinitesimal positive real 
part. 

The antisymmetry of the wave function is guaranteed via the hyper- 
spherical polynomials Yka(f~). For  minimal K, they are defined in general 
as  

YKa( ~-] ) =BPKaI~)K( A !)1/2 (21) 

Here B is a normalization factor 

B 2 =rr3/ZF(x)/2 (22) 

and 

x = K +  3(A - 1)/2 (23) 

The PKa are slater determinants where 

A 

K= E (2n+l)i (24) 
i=1 

and a denotes the set of single-particle quantum numbers p = (n, l, j ,  rn, tz) 
assigned to each of the A nucleons, as well as the coupling scheme, if 
needed, for the configuration a. The monomials of the Slater determinant 
a r e  

1/2 1 . . 1/2 ~ ( r ) = C m r 2 " + '  E Yt..,( )X,,,~{lmt, ims, Jm}x.~ (25) 
mltrt s 

where {lml, �89 ms; jm} is a Clebsch-Gordan  coefficient coupling l and s to 
total angular momentum j and z component m. The X,,~, Xtz are nucleon 
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Fig. 1. The hyperradial dependence calculated for the 
ground state of 12C using the two-nucleon potential of 
equation (11) of the text. 

spinors and isospinors. The C is a coefficient, chosen for convenience to be 

C 2 =2/(2n+1+ �89 (26) 

For the minimal K configuration we consider (Kmi n =8) of ($4/2PS/2), all 
the n values are zero and these will be dropped where possible in future 
equations. Because of bias towards an attractive nuclear spin orbit poten- 
tial, configurations including any nucleons in Pl/2 o r  "higher" orbitals p 
are neglected. Thus the sum of K'a" is neglected in equation (16) and an 
approximate X(#) and E obtained from its uncoupled residue equation (8). 
The two-nucleon potential is adjusted until the experimental binding 
energy is obtained using this configuration only. The solution for the 
hyperradial dependence Xx,,(O) is shown in Figure 1. 

In this section the relation of the single-particle wave function %(r) to 
the many-body solution to the Schr6dinger equation is outlined. We work 
in coordinate space and fourier transform to momentum space at the end. 
Here let R denote a distance from the center of mass of the entire nucleus 
to the nucleon. 

Now define the density distribution for this entire nucleus as 

A 

u(R)= f f doda , o E (27) 
, " 7 = 1  
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This can be rewritten, using equation (20) for d a  as 

f dRdpds A 
O3.4_5+2X ~=ldrt[-s ) exp[ StP2-i~lri2 X~ca(P) 

A A A 
• E **( r / ) ( - -1 ) i+ ' c  *"" E 8 ( R - r n )  E ( - 1 ) J + ' r  

i = i  n = l  j = l  

(28) 

Here we have used equation (20) for df~ and expanded the Slater 
determinants in cofactors, labeled C ~r where each cofactor is an (A - 1) by 
( A -  1) square determinant itself. The density distribution for a nucleon 
with quantum labels v is found by including only those terms in the sum 
over n where n--j.  Thus 

ff ,_ ldrl[g)  exp[S  0 2 -  i71 ri2 X~'a(O) 

A A 

X E *~*(ri)C*vri(-- l )  i+p E ~ ( R - - r j ) ( - -  1)~+J@p(rj)CVOXKa(P) 
i = l  j = l  

(29) 

We now do the A - 1 integrals d r  t where l r  resulting in 

B 2 dRdpds ~ij(A-1)!eS(o2-r?)drj 3/2 

Y 

X Xga(p)~*(rj)dpr(rj)XKa(P) (30) 

The $ q ( A -  1)! comes from integrating the two cofactors over all their 
coordinates, l is specified in equation (31) by r = ( n  l jm cz). We assume n 
equals zero. 

For our Kmin configuration of 12C, l can be only zero or one. The 
contour integrals can be done as 

1 f ds s(o~_,~) 2(02 - - r2)  M-1 
----7 ~___ rrz J~ s ---~e F ( M )  

= 0  i f r 2 > p  2 

i f  p2 > r 2 (31) 

(32) 
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Doing the sum on i and j results in 

B 2 oo dp dI~ 
d,(R) = ~/~r(~,/) s o ~ - - 5  X2(p)fp2(rl)6(R-r')2(p2 -r2)U-m dr' 

(33) 

Here 

3 (34) M = K + ~ ( A - 1 ) - I - ~  

Doing the integrations dr  1 d/~ trivially, and the spin, isospin integrations 
indicated in equation (25), and the summations there over ml, ms, results in 

d ~ ( R ) =  2B~  ~ 1 f. dR 2, ,C2R2(2.+t)z 2_R2)M- (35) 
p2K+3A--5X ~P) nl ~P ~'3/2I~(M ) 

Using equation (22) and equation (26), we can rewrite equation (35) as 

F(x)2R 2l ~ do 
d~(R)= F ( M ) ( I + I ) !  s (o~-R~)~-lx~(o) (36) p2K + 3A --5 

These densities are normalized to 

fo fo ~d~(R) R 2 dR = X2(O) do = I (37) 

or 

fo =d(R) R 2 dR =A 

The single-particle wave function can be deduced by setting 

%2(R) =d~(R) 

We note if X2(p),~d(p-a) then, from equation (36) 

G R 1 ( ' -  

(38) 

(39) 

(40) 
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If R<<a, then 

G R t ~( R )~,-ff~ (-~ ) e - R2(M- I)/2a2 

Thus our single-particle wave functions resemble harmonic oscillator wave 
functions. This behavior does not continue indefinitely, however, because 
for large p, X(P) the hyperradial dependence is exponential, i.e., X(p)c~ 
e-~P, so that for large R, 

%( R)o:e -~R (41) 

Thus the single-particle wave functions have an exponential tail for large 
separations. 

The spectral function for the entire nucleus can be written 

s(w) --- f ~*8(w-~)% dp dU --- ~ ( W -  e~) (42) 

if ,t, is an eigenfunction of H, with eigenvalue Ea, that is the solution of 
equation (16). The spectral function for a nucleon with quantum numbers 
v is 

(43) 

We now discuss the evaluation of equation (43). ~t" a is not expected to 
be an eigenfunction of H~. We note that H~q', is a function of the 
coordinates (p, f~). Thus we expand, using equation (15): 

/~;I,o: E C;oR.(p)rb(U) (44) 
b 

where 

C~a = f dU Yff(~-~)nrYa(~'~)Ra(P)/Ra(P) (45) 

We write equation (45) in this unusual fashion as H~ is a differential 
operator and can operate on the wave function R(p). The expansion 
coefficients C~a are functions of p, but not of fL We utilize the fact that the 
eigenfunctions of a Hermitian operator (the Laplacian) form a complete 
set in the expansion, equation (44). 
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Using equation (45), we can cast the spectral energy function as 

s~(w)-- fR*(o)YAa)8[ W- X~ cLYb(a)/YAa)J 
x Ro(O)ra(a) do d a d  A-' (46) 

To proceed further without approximation, one must solve 

WY~ CL(o)Yb(a)/Y.(a) =o 
b 

for O. In general, the solution can be written as 

O=Oe(W,a) 

(47) 

(48) 

The integral do in equation (46) can now be done with the result 

df~ r*( f~ )xE(pe) ra( f~ ) 
s~(w) = E f 

y c;o(o)Yb(m/Yo(a) ]}2 e 

(49) 

The sum over e in equation (49) is due to the possibility of there being 
several values of p which satisfy equation (47). 

An approximate evaluation of equation (49) is now obtained as a 
series expansion in powers of Cba/C~aa = x b. The convergence of such an 
expansion will be discussed after we establish what the initial terms of the 
expansion are like. 

Equation (47) is written as 

W=%(Pe)I1 + b*o y' x~r~(a)/Yo(a)] (50) 

To zeroth order in x b the solution is independent of f~, and is 

W= CL(p ) (51) 

or  

p=Pa(W)=Caal(W) (52)  

Comparing equations (50) and (52), we have 

Pa'~Pe[ 1"1- bv~aZ XbYb(~)/Ya(~)] (53) 
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or 

PeeP,,-Pa ~" XbYb(~)/Y,~(f$) (54) 
bv~a 

From the integrand of equation (49), we now define 

X2(De) f(p,)- (55) 
((a/Op) [ C:a(~ ) -I-~_,b§ )p, 

and we do a Taylor series expansion on f as 

f(Pe) =f(Pa) "l- ~ p,(Pe --Pa)"l-~(x2) (56) 

Substituting the expansion (56) into (49) we obtain 

s,(w)= E fdar:(a)Y.(a) /(Oa)+ ~ --04)+"" (57) 
e 

The term independent of xb integrates to 

S,(W)~ ~f(P,,) = ~ X2(p~) 
e e ((~/~P)f~a(P))[p a 

+ . . .  (58) 

The terms linear in xb integrate to zero as 

so that equation (58) is an approximation for the spectral energy function 
good to order x 2. We now discuss the evaluation of C~ which is needed 
for the terms retained in the approximate spectral energy function 
evaluated, equation (58). We will subsequently show that x b is small, so 
that the approximate formula, equation (58), can be expected to be rather 
accurate. 

From equation (45), we have with b = a 

C;a(P) = f d~ Y*(~2)Hya(~2)R~(p)/Ra(P) (59) 
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We separate H~ into T~ + V~, kinetic and potential energy terms, where 

cL(o)=(~) +(v~) 

Expanding the slater determinants Pa in cofactors we have 

(60) 

A 
= .or, ( 6 1 )  eo E ~.o(r,)C (-  l) '+"~ 

i=1 

Where C v~ is an A - 1 by A - 1 determinant formed by deleting the ith 
coordinates and the voth wave function. 

Using equations (20) and (21), and doing all the integrations dr  t =/=dr i 
results in 

h2B2 dsdr(s/~r)3/2eS(o2-r2) ~p,(r)[Vzd?p(r)Ra(p)]/Ra(p) 
2mTr i f o2K+3A - 5 s K + 3 t ( A  -- 1)-/1/2 

(62) 

( r . )  = - - -  

Now ~72~bR can be written as 

V2ffR = r  0 +A2 r2) 

where 

(63) 

3 OR 
Ao = - ~ (64) 

00p 

02R 1 OR 
pEA 2 = - -  (65) Op z p Op 

and 

So that doing the integrals ds dr  and using equation (32), results in 

2MTr3/2(I+�89 
(66) 

where 

M = K +  3(A - 2 ) - I  (67) 
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and where 
M-I 

Sa= X ( M s l )  ( -1 ) s  (68) 
�9 =0 2 l+2s+3  

M-1 
Sb~ ~ ( M s l )  ( -1 )*  (69) 

2 l+2s+5  s=0  

We now evaluate the potential energy contribution to equation (61) as 
follows. 

The potential term is written as 

1 V = ~ X 11(rq) (70) 
l J -~_- =_ 

The wave function is expanded via equation (15) and Y~(~2) is further 
expanded as in cofactors as 

A Va(~) = 8 pX(A !),/2 ,'~=1 q"j(ri)C~J"(- 1)i+~j for any fixedj (71) 

The cofactors are expanded in second cofactors as 

A 

C~J ~, = ~ 6 (r.]CC',"J .... for any i~i (72) r p j \  1 _ 1 - -  - 
j ~ # j  - 

Using equation (20) for df~ and integrating over all coordinates except 
those of dr  I dr 2, one finally obtains 

(V~) =D-E 
Where 

B 2 ~  dSdrldrz(S)3/2eS(O2 
D~----"s,//.t l=  1 f 0 2K+3A-5  

and 

B2 ~ dsdrldrz(S)3/2eS(p2 
E~---r~rt t=l f fK+3~-5 

(73) 

- r? - "~ )dp* (r 1 ) dp~ (r 2 ) V( r12 ) d?~(r I ) ~ , ( r  2 ) 

(74) 

-q-q)r V(r,2)~(r~) ~ , ( r , )  

(75) 
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The integrals over ds in equations (74), (75) can be done analytically 
using equation (32) either before or after a Moshinsky-type transformation 
from rlr 2 to relative and two-body center-of-mass coordinates is carried 
out. The final integrals over drl2 can be done analytically for simple 
enough potentials forms, such as Yukawa, exponential or delta functions. 
Thus 

C2a = ( T , )  + ( V , )  (76) 

can be evaluated from an assumed potential, V(ru), and from a solution 
Ra(P)=Xa(P)//p (3A-4)/2 of the Schr6dinger equation. The evaluation of 
Cb,, where 

% = f a a  r (a) /yo(a)Ro(o)/Ro(o) (77) 

analogous to equation (59), proceeds in a similar fashion. The Slater 
determinant in Yff(f~) is expanded in cofactors. For the 12C ground state, 
we take the (S1/2)4(P3/2) 8 configuration symbolized by the label a. We 
now discuss Cba for various other configurations, labeled b. 

We show that Cba is small with respect to Caa for various configura- 
tions b. For the ground state configuration assumed for 12C, Cba = 0 unless 
the state b is a particle-hole excitation of state a where the particle is a 
(n+ 1 l j m  .rz) excitation and the hole is (n l j m  zz)=p.  More complicated 
particle-hole excitations vanish when hyperangularly averaged, and l j  
excitations fail to simultaneously conserve parity and angular momentum. 
We note n = 0 for the assumed ground state configuration a. 

The kinetic energy contribution to Cba vanishes as the state p and the 
particle-hole excitations differ. 

Carrying through a similar analysis for Cb, we obtain 

B 2 r / S \ 3 / 2  2 r2 2 
Cba = ~riozK+3A_ 5 J d s I - g  ) e s(~ - , -r2) drldr2eo,(q)eoL(r2)V(rlz) 

X { ~b~(r,)d~,o(r2)- d~,(r2)dp~o(r,) } (78) 

Where q~ refers to the state associated with the knocked-out nucleon for 
which the spectral function is to be evaluated, q~ is an orbital in the 
assumed configuration for the ground state wave function, q~b is the n + 1 
radial excitation of the orbital q~,, and replaces t~)~, a in configuration b. 

To ensure configuration b is orthogonal to a, we write 

yb(~2) _ B {ao Pn+l +b0 Pn } (79) pX(A !)1/2 
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where pn is the slater determinant of configuration a, and pn+l denotes n 
replaced by n + 1 for the state p. The coefficients guaranteeing orthonor- 
mality are 

xbo Il+~ ]l/2 
a 0 =  p2 [i+~] (80) 

and 

b0 =(x + 1)(/+ (81) 

where 

x=K+ 3(A - 1) (82) 

I is the orbital angular momentum of the knocked-out nucleon. 
To simplify the evaluation of Cbc/C`, a, we assume a delta function 

potential. Thus we assume 

V(rlz ) = -  Vo83(r~-r2) (83) 

After considerable analysis of equations (74)-(79), we obtain 

Cba 1 (84) 
( E )  A 

Now, for a delta function force (V,)  is proportional to 1/p 3 so we 
cannot use a delta function force in calculations, but the ratio of Co, ,/(V, ) 
is independent of p for a delta function potential and is small. 

For  the more nearly realistic potentials used, the kinetic energy 
contribution is less than the potential energy contribution, as the values of 
energy for which the spectral energy function is nonvanishing, are all 
negative. Now 

Cba ~. Cba (85) 
Ca`, 

We have calculated [cf. equation (84)] Cba/(V~o ) as small, at least for a 
delta function potential. 

Ca a is approximately (3/4)(V~0) for the potential parametrized to 
bind carbon 12 in Kmin approximation. Therefore, we infer that x b = 
Cba/Cac~l/A for the configuration of a radial excitation of a single 
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nucleon. Thus the expansion of the spectral energy function, equation (58), 
is probably good to order 1//1, as the first-order terms all vanish and the 
corrections to the zeroth-order term is of second order in x b. There are A 
of these correction terms, so the total correction is estimated as A ( I / A )  2 = 
I / A ,  compared to the zeroth-order term. 

RESULTS 

Shown in Figure 2 is the predicted spectral energy function for l= 0 
and for I= 1 nucleons in 12C. The spectral energy distributions are not 
sharp delta functions as assumed by the simple independent particle shell 
model. The l= 0 nucleons are bound from about 20 to 25 MeV, centered 
about 22 MeV binding energy. The energy is not discrete as the nucleons 
are interacting with other nucleons. Only for a two-body problem can one 
expect discrete bound energies. The l =0  nucleons are bound at about 10.5 
MeV and the distribution ofp wave nucleons is much sharper than the l=  0 
nucleons. It is speculated that this is due to the p wave nucleons interacting 
less than the S wave nucleons. Tending to be near the nuclear surface 
reduces the averaged two-body interaction for the l=  1 nucleons as they 
are further apart there. Thus the shell model assumption of sharp energy 
distributions for loosely bound nucleons has calculational support here. 
No other calculation able to lend direct support to that assumption is 
known to the author. Sharp peaks seen in reactions, i.e., (p, d) and 
inelastic scattering, have been interpreted as lending support to the idea of 
discrete energy distributions for bound nucleons. 

The question of how the nucleus can be a system of strongly interact- 
ing particles yet the independent particle model be valid has often been 
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Fig. 2. The spectral energy function for l= 0 and 1 pro- 
tons in the ground state of 12C. 
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puzzled over (De Shalit, 1963; De Shalit, 1974). We see an answer to that 
question developing here along the following lines. A collective strongly 
interacting system description of the nucleus was utilized to describe ~2C. 
A two-nucleon potential is input to the problem. No  one-body shell model 
potentials, nor effective residual potentials are utilized. No  independent 
particle motion in an averaged potential is assumed. The center-of-mass 
motion is properly treated. Coming out of this calculation we see the 1= 0 
nucleons have a comparatively broad  energy spread which we associate 
with strongly interacting many-body  (more than 2) systems. The l - 1  
nucleons have a narrow energy distribution due to an angular momen tum 
barrier reducing their frequency of interaction. 

We also speculate that the use of a spin-orbit term in the two-nucleon 
potential would increase the binding of the l =  1 nucleons relative to the 
1= 0 nucleons. This is desirable from reaction Q value systematics, which 
suggest P3/2 nucleons are bound by more than 10 MeV in 12C. 

The single-particle wave functions can be deduced f rom the many- 
body wave function calculations and are similar to harmonic oscillator 
wave functions, except for an exponential tail at infinity, instead of a 
Gaussian behavior. The spectral function calculated depends on the target 
wave function used and the two-nucleon interaction assumed. The spectral 
energy function is calculated approximately, but  not perturbatively. An 
expansion in a complete set of configurations is made and only the ground 
state configuration is retained. In  this approximation the I =  1 protons have 
a sharply peaked spectral energy function. The l - -0  protons have a 
broader  spectral energy function and are more tightly bound. While 
expected, it is very comforting to see this come out of a many-body  
calculation. 

The widths of the calculated peaks are due to the use of a many-body 
theory and wave function, rather than the assumption of an independent 
particle shell model description. 
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